Microscope optics with PI160 and PI4xx

Application

For a temperature measurement of small objects on electronic boards the PI cameras can be equipped with a microscope optic. For this purpose an additional lens of the same type has to be arranged inverted like shown in fig. 1.

Fig. 1: PI camera with second lens with the same focus

With this lens arrangement you get a 1:1 image of the detector which results in a nominal IFOV (pixel size at object level) of $25 \mu \mathrm{~m}$. For a correct temperature measurement the object size should be at least $100 \mu \mathrm{~m}$. Fig. 2 shows recommended lens combinations.

PI models	PI160	PI4xx
recommended lens combinations	$2 \times 6^{\circ} \times 5^{\circ}$	$2 \times 13^{\circ} \times 10^{\circ}$
	$2 \times 23^{\circ} \times 17^{\circ}$	

Fig. 2: Recommended lens types for build up microscope optics

Setup

1. Take the PI160/ PI4xx, equipped with one lens, and adjust focus to infinity (∞).
2. Take the second lens and turn it 180°. Connect both optics using a tape or similar (fig. 3).

Fig. 3: Lens arrangement on PI

Fig. 4: PI mounted on a microscope rack

Sample pictures

3. Use a tripod or a microscope rack to adjust the distance to the measuring object. The optimum distance is approx. at $4-10 \mathrm{~mm}$. The focus depth on a microscope optics is very low, therefore the focus has to be adjusted by varying the distance.
4. The transmission (PIConnect software) has to be set to 0,7 as the second lens is not calibrated.

Fig. 5: Electronic chip with size $2 \times 2 \mathrm{~mm}$

Fig. 7: Part of a Euro coin

Fig. 6: Brandenburg gate from a 10 cent coin

